Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958503

RESUMO

The COVID-19 pandemic has spurred intense research efforts to identify effective treatments for SARS-CoV-2. In silico studies have emerged as a powerful tool in the drug discovery process, particularly in the search for drug candidates that interact with various SARS-CoV-2 receptors. These studies involve the use of computer simulations and computational algorithms to predict the potential interaction of drug candidates with target receptors. The primary receptors targeted by drug candidates include the RNA polymerase, main protease, spike protein, ACE2 receptor, and transmembrane protease serine 2 (TMPRSS2). In silico studies have identified several promising drug candidates, including Remdesivir, Favipiravir, Ribavirin, Ivermectin, Lopinavir/Ritonavir, and Camostat Mesylate, among others. The use of in silico studies offers several advantages, including the ability to screen a large number of drug candidates in a relatively short amount of time, thereby reducing the time and cost involved in traditional drug discovery methods. Additionally, in silico studies allow for the prediction of the binding affinity of the drug candidates to target receptors, providing insight into their potential efficacy. This study is aimed at assessing the useful contributions of the application of computational instruments in the discovery of receptors targeted in SARS-CoV-2. It further highlights some identified advantages and limitations of these studies, thereby revealing some complementary experimental validation to ensure the efficacy and safety of identified drug candidates.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Pandemias , Peptídeo Hidrolases/farmacologia
2.
Microorganisms ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374906

RESUMO

The continuous burden of human immunodeficiency virus-1 in Sub-Saharan Africa, coupled with the inability of antiretroviral agents to eradicate HIV-1 from viral reservoirs, the potential risks of drug resistance development, and the development of adverse effects, emphasizes the need to develop a new class of HIV-1 inhibitors. Here, we cultivated four endophytic fungal isolates from a medicinal plant, Albizia adianthifolia with the addition of small epigenetic modifiers, sodium butyrate, and valproic acid, to induce the expression of biosynthetic gene clusters encoding active secondary metabolites with probable anti-HIV activities. We identified a non-toxic crude extract of the endophytic fungus Penicillium chrysogenum treated with sodium butyrate to possess significantly greater anti-HIV activity than the untreated extracts. Penicillium chrysogenum P03MB2 showed anti-HIV activity with an IC50 of 0.6024 µg/mL compared to untreated fungal crude extract (IC50 5.053 µg/mL) when treated with sodium butyrate. The profile of secondary metabolite compounds from the bioactive, partially purified extracts were identified by gas chromatography-mass spectrometry (GC-MS), and more bioactive compounds were detected in treated P. chrysogenum P03MB2 fractions than in untreated fractions. Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro (13.64%), cyclotrisiloxane, hexamethyl (8.18%), cyclotetrasiloxane, octamethyl (7.23%), cyclopentasiloxane, decamethyl (6.36%), quinoline, 1,2-dihydro-2,24-trimethyl (5.45%), propanenitrile (4.55%), deca-6,9-diene (4.55%), dibutyl phthalate (4.55%), and silane[1,1-dimethyl-2-propenyl)oxy]dimethyl (2.73%) were the most abundant compounds. These results indicate that treatment of endophytic fungi with small epigenetic modifiers enhances the secretion of secondary metabolites with stronger anti-HIV-1 properties, acknowledging the feasibility of epigenetic modification as an innovative approach for the discovery of cryptic fungal metabolites which can be developed into therapeutic compounds.

3.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985614

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19, which was declared a global pandemic in March 2020 by the World Health Organization (WHO). Since SARS-CoV-2 main protease plays an essential role in the virus's life cycle, the design of small drug molecules with lower molecular weight has been a promising development targeting its inhibition. Herein, we evaluated the novel peptidomimetic azatripeptide and azatetrapeptide nitriles against SARS-CoV-2 main protease. We employed molecular dynamics (MD) simulations to elucidate the selected compounds' binding free energy profiles against SARS-CoV-2 and further unveil the residues responsible for the drug-binding properties. Compound 8 exhibited the highest binding free energy of -49.37 ± 0.15 kcal/mol, followed by compound 7 (-39.83 ± 0.19 kcal/mol), while compound 17 showed the lowest binding free energy (-23.54 ± 0.19 kcal/mol). In addition, the absorption, distribution, metabolism, and excretion (ADME) assessment was performed and revealed that only compound 17 met the drug-likeness parameters and exhibited high pharmacokinetics to inhibit CYP1A2, CYP2C19, and CYP2C9 with better absorption potential and blood-brain barrier permeability (BBB) index. The additional intermolecular evaluations suggested compound 8 as a promising drug candidate for inhibiting SARS-CoV-2 Mpro. The substitution of isopropane in compound 7 with an aromatic benzene ring in compound 8 significantly enhanced the drug's ability to bind better at the active site of the SARS-CoV-2 Mpro.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , SARS-CoV-2 , Simulação de Dinâmica Molecular , Ésteres/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases
4.
Inform Med Unlocked ; 38: 101230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974159

RESUMO

The challenges posed by COVID-19's emergence have led to a search for its therapies. There is no cure for COVID-19 infection yet, but there is significant progress in vaccine formulation for prophylaxis and drug development (such as Paxlovid) for high-risk patients. As a contribution to the ongoing quest for solutions, this study shows potent phytocompounds identification as inhibitors of SARS-CoV-2 targets using in silico methods. We used virtual screening, molecular docking, and molecular dynamics (MD) simulations to investigate the interaction of some phytochemicals with 3CLpro, ACE2, and PLpro proteins crucial to the SARS-CoV-2 viral cycle. The predicted docking scores range from -5.5 to -9.4 kcal/mol, denoting appreciable binding of these compounds to the SARS-CoV-2 proteins and presenting a multitarget inhibition for COVID-19. Some phytocompounds interact favorably at non-active sites of the enzymes. For instance, MD simulation shows that an identified site on PLpro is stable and likely an allosteric region for inhibitor binding and modulation. These phytocompounds could be developed into effective therapy against COVID-19 and probed as potential multitarget-directed ligands and drug candidates against the SARS-CoV-2 virus. The study unveils drug repurposing, selectivity, allosteric site targeting, and multitarget-directed ligand in one piece. These concepts are three distinct approaches in the drug design and discovery pipeline.

5.
Front Genet ; 13: 1077159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583026

RESUMO

Antiretroviral treatment has significantly reduced human immunodeficiency virus infection and mortality. However, the current treatment regimen is limited by adverse side effects, the emergence of drug resistance, and the inability to eliminate viral reservoirs. Here, fifteen endophytic fungi were isolated from Sclerocarya birrea and Hypoxis plants. Crude extracts of Alternaria alternata (strain ID PO4PR1, PO4PR2, and PO2PL1) of the fifteen isolate's crude extracts showed anti-HIV-1 activity in TZM-bl cell line at inhibitory concentration (IC50) values ranging from 0.017 to 1.170 µg/ml. The three crude extracts also maintained the virus replication inhibition profile on PBMCs and CD4+ T cells at concentrations ranging from 0.3 to 50.2 ng/ml. Partial purification using the solid phase extraction and analysis with Gas Chromatography-Mass spectrophotometry showed a diverse profile. The bioactive compounds were identified based on peak area, retention time, similarity index. The major compounds from GC-MS analysis of A. Alternata revealed the existence of cyclotrisiloxane octamethyl (22.92%); Propaninitrile (16,67%); Pyrrolol[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methyl propyl) (10.42%); Silane, diethylethoxy(2-ethoxyethyloxy) (4.17%); Coumarin, 3,4-dihydro-4,5,7-trimethyl- 4,5,7-Trimethyl-2-chromanone (13.7%) and 1,2-Cyclobutanedicarbonitrile (2.08%) with previously reported biological activities such as antimicrobial, anti-inflammatory and antioxidant properties. Therefore, these bioactive compounds from A. alternata fungal endophytes could be repurposed as potential anti-HIV agents. This study showed the potential of endophytic fungi, Alternaria alternata from S. birrea, and Hypoxis species as producers of anti-HIV compounds.

6.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889246

RESUMO

In over a century since its discovery, Alzheimer's disease (AD) has continued to be a global health concern due to its incurable nature and overwhelming increase among older people. In this paper, we give an overview of the efforts of researchers towards identifying potent BACE1 exosite-binding antibodies and allosteric inhibitors. Herein, we apply computer-aided drug design (CADD) methods to unravel the interactions of some proposed psychotic and meroterpenoid BACE1 allosteric site inhibitors. This study is aimed at validating the allosteric potentials of these selected compounds targeted at BACE1 inhibition. Molecular docking, molecular dynamic (MD) simulations, and post-MD analyses are carried out on these selected compounds, which have been experimentally proven to exhibit allosteric inhibition on BACE1. The SwissDock software enabled us to identify more than five druggable pockets on the BACE1 structural surface using docking. Besides the active site region, a melatonin derivative (compound 1) previously proposed as a BACE1 allostery inhibitor showed appreciable stability at eight different subsites on BACE1. Refinement with molecular dynamic (MD) simulations shows that the identified non-catalytic sites are potential allostery sites for compound 1. The allostery and binding mechanism of the selected potent inhibitors show that the smaller the molecule, the easier the attachment to several enzyme regions. This finding hereby establishes that most of these selected compounds failed to exhibit strong allosteric binding with BACE1 except for compound 1. We hereby suggest that further studies and additional identification/validation of other BACE1 allosteric compounds be done. Furthermore, this additional allosteric site investigation will help in reducing the associated challenges with designing BACE1 inhibitors while exploring the opportunities in the design of allosteric BACE1 inhibitors.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ácido Aspártico Endopeptidases , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
7.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889251

RESUMO

The use of vaccinations and antiviral medications have gained popularity in the therapeutic management of avian influenza H7N9 virus lately. Antiviral medicines are more popular due to being readily available. The presence of the neuraminidase protein in the avian influenza H7N9 virus and its critical role in the cleavage of sialic acid have made it a target drug in the development of influenza virus drugs. Generally, the neuraminidase proteins have common conserved amino acid residues and any mutation that occurs around or within these conserved residues affects the susceptibility and replicability of the influenza H7N9 virus. Herein, we investigated the interatomic and intermolecular dynamic impacts of the experimentally reported E119V mutation on the oseltamivir resistance of the influenza H7N9 virus. We extensively employed molecular dynamic (MD) simulations and subsequent post-MD analyses to investigate the binding mechanisms of oseltamivir-neuraminidase wildtype and E119V mutant complexes. The results revealed that the oseltamivir-wildtype complex was more thermodynamically stable than the oseltamivir-E119V mutant complex. Oseltamivir exhibited a greater binding affinity for wildtype (-15.46 ± 0.23 kcal/mol) relative to the E119V mutant (-11.72 ± 0.21 kcal/mol). The decrease in binding affinity (-3.74 kcal/mol) was consistent with RMSD, RMSF, SASA, PCA, and hydrogen bonding profiles, confirming that the E119V mutation conferred lower conformational stability and weaker protein-ligand interactions. The findings of this oseltamivir-E119V mutation may further assist in the design of compounds to overcome E119V mutation in the treatment of influenza H7N9 virus patients.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Antivirais/química , Farmacorresistência Viral/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Mutação , Neuraminidase/química , Neuraminidase/genética , Oseltamivir/química , Oseltamivir/farmacologia
8.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889388

RESUMO

Influenza virus infections continue to be a significant and recurrent public health problem. Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments are being sought to reduce the burden of flu-related illness. The time-consuming development of treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of 2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in the DrugBank database. According to the calculations of MM-GBSA, tucatinib (-54.11 kcal/mol) and Promacta (-56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity than the standard drug peramivir (-49.09 kcal/mol). Molecular dynamics (MD) simulation studies showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were stable throughout the simulation period. According to ADME analysis, the hit compounds have a high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood-brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds experimentally against the influenza H7N9 virus. The investigation and validation of these potential H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzoatos , Reposicionamento de Medicamentos , Humanos , Hidrazinas , Influenza Humana/tratamento farmacológico , Cloridrato de Lurasidona/farmacologia , Cloridrato de Lurasidona/uso terapêutico , Neuraminidase/química , Pirazóis
9.
Comput Math Methods Med ; 2022: 2147763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685897

RESUMO

Cancer is a disease caused by the uncontrolled, abnormal growth of cells in different anatomic sites. In 2018, it was predicted that the worldwide cancer burden would rise to 18.1 million new cases and 9.6 million deaths. Anticancer compounds, often known as chemotherapeutic medicines, have gained much interest in recent cancer research. These medicines work through various biological processes in targeting cells at various stages of the cell's life cycle. One of the most significant roadblocks to developing anticancer drugs is that traditional chemotherapy affects normal cells and cancer cells, resulting in substantial side effects. Recently, advancements in new drug development methodologies and the prediction of the targeted interatomic and intermolecular ligand interaction sites have been beneficial. This has prompted further research into developing and discovering novel chemical species as preferred therapeutic compounds against specific cancer types. Identifying new drug molecules with high selectivity and specificity for cancer is a prerequisite in the treatment and management of the disease. The overexpression of HSP90 occurs in patients with cancer, and the HSP90 triggers unstable harmful kinase functions, which enhance carcinogenesis. Therefore, the development of potent HSP90 inhibitors with high selectivity and specificity becomes very imperative. The activities of HSP90 as chaperones and cochaperones are complex due to the conformational dynamism, and this could be one of the reasons why no HSP90 drugs have made it beyond the clinical trials. Nevertheless, HSP90 modulations appear to be preferred due to the competitive inhibition of the targeted N-terminal adenosine triphosphate pocket. This study, therefore, presents an overview of the various computational models implored in the development of HSP90 inhibitors as anticancer medicines. We hereby suggest an extensive investigation of advanced computational modelling of the three different domains of HSP90 for potent, effective inhibitor design with minimal off-target effects.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Computadores , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
10.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268741

RESUMO

The H7N9 virus attaches itself to the human cell receptor protein containing the polysaccharide that terminates with sialic acid. The mutation of neuraminidase at residue E119 has been explored experimentally. However, there is no adequate information on the substitution with E119V in peramivir at the intermolecular level. Therefore, a good knowledge of the interatomic interactions is a prerequisite in understanding its transmission mode and subsequent effective inhibitions of the sialic acid receptor cleavage by neuraminidase. Herein, we investigated the mechanism and dynamism on the susceptibility of the E119V mutation on the peramivir-neuraminidase complex relative to the wildtype complex at the intermolecular level. This study aims to investigate the impact of the 119V substitution on the neuraminidase-peramivir complex and unveil the residues responsible for the complex conformations. We employed molecular dynamic (MD) simulations and extensive post-MD analyses in the study. These extensive computational investigations were carried out on the wildtype and the E119V mutant complex of the protein for holistic insights in unveiling the effects of this mutation on the binding affinity and the conformational terrain of peramivir-neuraminidase E119V mutation. The calculated total binding energy (ΔGbind) for the peramivir wildtype is -49.09 ± 0.13 kcal/mol, while the E119V mutant is -58.55 ± 0.15 kcal/mol. The increase in binding energy (9.46 kcal/mol) is consistent with other post-MD analyses results, confirming that E119V substitution confers a higher degree of stability on the protein complex. This study promises to proffer contributory insight and additional knowledge that would enhance future drug designs and help in the fight targeted at controlling the avian influenza H7N9 virus. Therefore, we suggest that experimentalists collaborate with computational chemists for all investigations of this topic, as we have done in our previous studies.


Assuntos
Neuraminidase
11.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268746

RESUMO

In March 2013, a novel avian influenza A (H7N9) virus emerged in China. By March 2021, it had infected more than 1500 people, raising concerns regarding its epidemic potential. Similar to the highly pathogenic H5N1 virus, the H7N9 virus causes severe pneumonia and acute respiratory distress syndrome in most patients. Moreover, genetic analysis showed that this avian H7N9 virus carries human adaptation markers in the hemagglutinin and polymerase basic 2 (PB2) genes associated with cross-species transmissibility. Clinical studies showed that a single mutation, neuraminidase (NA) R292K (N2 numbering), induces resistance to peramivir in the highly pathogenic H7N9 influenza A viruses. Therefore, to evaluate the risk for human public health and understand the possible source of drug resistance, we assessed the impact of the NA-R292K mutation on avian H7N9 virus resistance towards peramivir using various molecular dynamics approaches. We observed that the single point mutation led to a distorted peramivir orientation in the enzyme active site which, in turn, perturbed the inhibitor's binding. The R292K mutation induced a decrease in the interaction among neighboring amino acid residues when compared to its wild-type counterpart, as shown by the high degree of fluctuations in the radius of gyration. MM/GBSA calculations revealed that the mutation caused a decrease in the drug binding affinity by 17.28 kcal/mol when compared to the that for the wild-type enzyme. The mutation caused a distortion of hydrogen bond-mediated interactions with peramivir and increased the accessibility of water molecules around the K292 mutated residue.


Assuntos
Subtipo H7N9 do Vírus da Influenza A
12.
Mol Divers ; 26(5): 2761-2774, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35067751

RESUMO

Optimization and re-optimization of bioactive molecules using in silico methods have found application in the design of more active ones. Herein, we applied a pharmacophore modeling approach to screen potent dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) aimed at Alzheimer's disease (AD) treatment. The investigation entails molecular dynamics simulation, docking, pharmacophore modeling, drug-like screening, and binding energy analysis. We prepared a pharmacophore model from approved inhibitors of AChE and BuChE to predict the crucial moieties required for optimum molecular interaction with these proteins. The obtained pharmacophore model, used for database screening via some critical criteria, showed 229 hit molecules. Further analyses showed 42 likely dual inhibitors of AChE/BuChE with drug-like and pharmacokinetics properties the same as the approved cholinesterase inhibitors. Finally, we identified 14 dual molecules with improved potentials over the existing inhibitors and simulated ZINC92385797 bound to human AChE and BuChE structure after noticing that these 14 molecules are similar. The selected compound maintained relative stability at the active sites of both proteins over 120 ns simulation. Our integrated protocols showed the pertinent recipes of anti-AD drug design through the in silico pipeline.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
13.
J Mol Model ; 28(2): 35, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022913

RESUMO

The escalating burden of tuberculosis disease and drastic effects of current medicine has stimulated a search for alternative drugs. A medicinal plant Warburgia salutaris has been reported to possess inhibitory properties against M. tuberculosis. In this study, we apply computational methods to investigate the probability of W. salutaris compounds as potential inhibitors of M. tuberculosis QcrB protein. We performed molecular docking, molecular dynamics simulations, radius of gyration, principal component analysis (PCA), and molecular mechanics-generalized born surface area (MM-GBSA) binding-free energy calculations in explicit solvent to achieve our objective. The results suggested that ursolic acid (UA) and ursolic acid acetate (UAA) could serve as preferred potential inhibitors of mycobacterial QcrB compared to lansoprazole sulphide (LSPZ) and telacebec (Q203)-UA and UAA have a higher binding affinity to QcrB compared to LSPZ and Q203 drugs. UA binding affinity is attributed to hydrogen bond formation with Val120, Arg364 and Arg366, and largely resonated from van der Waals forces resulting from UA interactions with hydrophobic amino acids in its vicinity. UAA binds to the porphyrin ring binding site with higher binding affinity compared to LSPZ. The binding affinity results primarily from van der Waals forces between UAA and hydrophobic residues of QcrB in the porphyrin ring binding site where UAA binds competitively. UA and UAA formed stable complexes with the protein with reduced overall residue mobility, consequently supporting the magnitude of binding affinity of the respective ligands. UAA could potentially compete with the porphyrin ring for the binding site and deprive the mycobacterial cell from oxygen, consequently disturbing mycobacterial oxygen-dependent metabolic processes. Therefore, discovery of a compound that competes with porphyrin ring for the binding site may be useful in QcrB pharmocological studies. UA proved to be a superior compound, although its estimated toxicity profile revealed UA to be hepatotoxic within acceptable parameters. Although preliminary findings of this report still warrant experimental validation, they could serve as a baseline for the development of new anti-tubercular drugs from natural resources that target QcrB.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Triterpenos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Ligantes , Conformação Molecular , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Relação Estrutura-Atividade , Triterpenos/farmacologia
14.
J Mol Recognit ; 35(2): e2940, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34910337

RESUMO

Berberine, an active compound in the extract of golden seal (an age-long remedy for many infections) has been confirmed to be responsible for the extract's activity against multi-drug resistant strain of Mycobacterium tuberculosis. There is no available study that shows the exact target of berberine in M tuberculosis, although it is confirmed that berberine inhibits the polymerisation of filamentous temperature-sensitive mutant Z (FtsZ), an important bacteria cytokinesis protein, in Escherichia coli, suggesting that FtsZ could as well be the target of berberine in M tuberculosis. In this study, we carried out ligand-based virtual screening to identify analogues of berberine followed by molecular dynamics (MD) simulations of the complexes of Mtb-FtsZ with berberine (berb1) and the five selected analogues (berb9 [ZINC1709414], berb37 [ZINC238749993], berb38 [ZINC13509022], berb43 [ZINC14765594], and berb48 [ZINC238758595]). Post-MD analyses such as binding free energy, RMSD, RMSF, RoG and hydrogen bond lifetime analysis were used to understand the interactions between these ligands and the receptor. The results suggested that Mtb-FtsZ could likely be the target of berberine in M tuberculosis as it forms a stable complex coupled with a significantly high binding energy. The study also identified other potential inhibitors of MTB-FtsZ polymerisation. Berb38 specifically showed greater interaction with the residues at the binding site of the protein, forming a far more stable complex with the receptor than any of the other compounds under investigation, including berberine itself. ADME properties calculations also predicted all the ligands to be bioactive as orally administered drugs.


Assuntos
Antituberculosos , Berberina , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Berberina/química , Berberina/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
15.
Comb Chem High Throughput Screen ; 25(5): 831-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33538664

RESUMO

BACKGROUND: Deubiquitinating enzymes (DUBs) protein family have been implicated in some deregulated pathways involved in carcinogeneses, such as cell cycle, gene expression, and DNA damage response (DDR). Zinc finger with UFM1-specific peptidase domain protein (ZUFSP) is one of the recently discovered members of the DUBs. OBJECTIVES: To identify and cross-validate the ZUFSP binding site using the bioinformatic tools, including SiteMap&Metapocket, respectively. To understand the molecular basis of complementary ZUFSP-Ub interaction and associated structural events using MD Simulation. METHODS: In this study, four binding pockets were predicted, characterized, and cross-validated based on physiochemical features such as site score, druggability score, site volume, and site size. Also, a molecular dynamics simulation technique was employed to determine the impact of ubiquitin-binding on ZUFSP. RESULTS: Site 1 with a site score 1.065, Size 102, D scores 1.00, and size volume 261 was predicted to be the most druggable site. Structural studies revealed that upon ubiquitin-binding, the motional movement of ZUFSP was reduced when compared to the unbound ZUFSP. Also, the ZUFSP helical arm (ZHA) domain orient in such a way that it moves closer to the Ub; this orientation enables the formation of a UBD which is very peculiar to ZUFSP. CONCLUSION: The impact of ubiquitin on ZUFSP movement and the characterization of its predicted druggable site can be targeted in the development of therapeutics.


Assuntos
Ubiquitina , Dedos de Zinco , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Ubiquitina/metabolismo
16.
J Biomol Struct Dyn ; 40(4): 1558-1570, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33021149

RESUMO

Trisubstituted benzimidazoles (trisbenz) are significantly active against nonreplicating Mycobacterium tuberculosis (MTB) by inhibiting the polymerization of Filamentous Temperature Sensitive Mutant Z (FtsZ), an essential bacteria cell division protein. In-depth in-silico study of 5 of the most active trisubstituted benzimidazoles; trisbenz 1, 2, 3, 4 and 5, giving insight into their properties, such as stability, bioavailability, interactions with residues at the binding site of MTB-FtsZ and their influence on structural dynamics of the protein have been conducted. This was achieved through the application of in-silico methods including density functional theory (DFT) calculations, ADME properties calculations, molecular docking and molecular dynamics simulations. A DFT approach was applied to predict reactivity properties of potent FtsZ inhibitors, and the results reveal the relative reactivity of these inhibitors as bioactive moieties. The estimated ADME properties predicted all 5 compounds to be bioavailable and suitable for oral administration. Molecular docking, binding free energy, RMSD, RMSF, and hydrogen bond analysis confirmed these 5 compounds as potent MTB-FtsZ inhibitors. Although analyses proved these compounds to be bioactive and potent MTB-FtsZ inhibitors, however, trisbenz 1 appeared to be the most active against this protein while trisbenz 5 was the least active. This study further confirms the experimental study while also giving insight on the compounds mechanism of action and presents their bioavailability properties.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/química , Proteínas de Bactérias/química , Benzimidazóis/química , Proteínas do Citoesqueleto , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/metabolismo , Polimerização
17.
J Biomol Struct Dyn ; 40(7): 2978-2990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33155869

RESUMO

The growing occurrence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb) strains underscores an urgent need for new antibiotics. The development of more bioactive antibiotics against drug-resistant organisms with a different mode of action could be a game-changer for the cure and eradication of tuberculosis (TB). Pantothenate Kinase (PanK) and CTP synthetase (PyrG) are both essential for RNA, DNA, and Lipids biosynthesis pathways. Given the extensive knowledge on these biosynthesis pathways inhibition of Mtb growth and survival, these enzymes present a fascinating opportunity for anti-mycobacterial drug discovery. Recently, it was experimentally established that the active metabolite 11426026 of compound 7947882 (a prodrug activated by EthA monooxygenase, 5-methyl-N-(4-nitrophenyl) thiophene-2-carboxamide) inhibits the activities of PyrG and PanK to indicate novel multitarget therapy aimed at discontinuing Mtb growth. However, the molecular mechanisms of their selective inhibition remain subtle. In this work, molecular dynamics simulations were employed to investigate the inhibitory mechanism as well as the selectivity impact of the active metabolite inhibitor of these enzymes. Computational modeling of the studied protein-ligand systems reveals that the active metabolite can potentially inhibit both PanK and PyrG, thereby creating a pathway as a double target approach in tuberculosis treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Humanos , Mycobacterium tuberculosis/genética , Fosfotransferases (Aceptor do Grupo Álcool) , Tuberculose/tratamento farmacológico
18.
J Biomol Struct Dyn ; 40(12): 5253-5265, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33410374

RESUMO

ß-amyloid precursor protein cleaving enzyme1 (BACE1) has prominently been an important drug design target implicated in Alzheimer's disease pathway. The failure rate of most of the already tested drugs at different clinical phases remains a major concern. Recently, AM-6494 was reported as a novel potent, highly selective, and orally effective inhibitor against BACE1. AM-6494 displayed no alteration of skin/fur colour in animal studies, an adverse effect common to previous BACE1 inhibitors. However, the atomistic molecular mechanism of BACE1 inhibition by AM-6494 remains unclear. To elucidate the binding mechanism of AM-6494 relative to umibecestat (CNP-520) as well as the structural changes when bound to BACE1, advanced computational techniques such as accelerated MD simulation and principal component analysis have been utilised. The results demonstrated higher binding affinity of AM-6494 at BACE1 with van der Waals as dominant energy contributor compared to umibecestat. Conformational monitoring of the ß-hairpin flap covering the active site revealed an effective flap closure when bound with AM-6494 compared to CNP-520, which predominantly alternates between semi-open and closed conformations. The observed effective flap closure of AM-6494 explains its higher inhibitory power towards BACE1. Besides the catalytic Asp32/228 dyad, Tyr14, Leu30, Tyr71 and Gly230 represent critical residues in the potency of these inhibitors at BACE1 binding interface. The findings highlighted in this research provide a basis to explain AM-6494 high inhibitory potency and might assist in the design of new inhibitors with improved selectivity and potency for BACE1.


Assuntos
Doença de Alzheimer , Ácido Aspártico Endopeptidases , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Dinâmica Molecular
19.
Curr Med Chem ; 29(1): 114-135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34102967

RESUMO

Over decades of its identification, numerous past and ongoing research has focused on ß- amyloid cleaving enzyme 1 (BACE1) therapeutic roles as a target in treating Alzheimer's disease (AD). Although the initial BACE1 inhibitors at phase-3 clinical trials tremendously reduced ß -amyloidassociated plaques in patients with AD, the researchers eventually discontinued the tests for lack of potency. This discontinuation has resulted in limited drug development and discovery targeted at BACE1, despite the high demand for dementia and AD therapies. It is, therefore, imperative to describe the detailed underlying biological basis of the BACE1 therapeutic option in neurological diseases. Herein, we highlight BACE1 bioactivity, genetic properties, and role in neurodegenerative therapy. We review research contributions on BACE1 exosite-binding antibody and allosteric inhibitor development as AD therapies. The review also covers BACE1 biological function, the disease-associated mechanisms, and the enzyme conditions for amyloid precursor protein site splitting. Based on the present review, we suggest further studies on anti-BACE1 exosite antibodies and BACE1 allosteric inhibitors. Non-active site inhibition might be the way forward to BACE1 therapy in Alzheimer's neurological disorder.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Anticorpos , Ácido Aspártico Endopeptidases , Humanos
20.
Curr Drug Targets ; 23(3): 266-285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34370634

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is an intensifying neurodegenerative illness due to its irreversible nature. Identification of ß-site Amyloid Precursor Protein (APP) cleaving en-zyme1 (BACE1) has been a significant medicinal focus towards AD treatment, and this has opened ground for several investigations. Despite the numerous works in this direction, no BACE1 inhibitor has made it to the final approval stage as an anti-AD drug. METHODS: We provide an introductory background of the subject with a general overview of the pathogenesis of AD. The review features BACE1 inhibitor design and development with a focus on some clinical trials and discontinued drugs. Using the topical keywords BACE1, inhibitor design, and computational/theoretical study in the Web of Science and Scopus database, we retrieved over 49 relevant articles. The search years are from 2010 and 2020, with analysis conducted from May 2020 to March 2021. RESULTS AND DISCUSSION: Researchers have employed computational methodologies to unravel po-tential BACE1 inhibitors with a significant outcome. The most used computer-aided approach in BACE1 inhibitor design and binding/interaction studies are pharmacophore development, quantita-tive structure-activity relationship (QSAR), virtual screening, docking, and molecular dynamics (MD) simulations. These methods, plus more advanced ones including quantum mechan-ics/molecular mechanics (QM/MM) and QM, have proven substantial in the computational frame-work for BACE1 inhibitor design. Computational chemists have embraced the incorporation of in vitro assay to provide insight into the inhibition performance of identified molecules with potential inhibition towards BACE1. Significant IC50 values up to 50 nM, better than clinical trial com-pounds, are available in the literature. CONCLUSION: The continuous failure of potent BACE1 inhibitors at clinical trials is attracting many queries prompting researchers to investigate newer concepts necessary for effective inhibitor de-sign. The considered properties for efficient BACE1 inhibitor design seem enormous and require thorough scrutiny. Lately, researchers noticed that besides appreciable binding affinity and Blood-Brain Barrier (BBB) permeation, BACE1 inhibitor must show low or no affinity for permeability-glycoprotein. Computational modeling methods have profound applications in drug discovery strat-egies. With the volume of recent in silico studies on BACE1 inhibition, the prospect of identifying potent molecules that would reach the approved level is feasible. Investigators should try pushing many of the identified BACE1 compounds with significant anti-AD properties to preclinical and clinical trial stages. We also advise computational research on allosteric inhibitor design, exosite modeling, and multisite inhibition of BACE1. These alternatives might be a solution to BACE1 drug discovery in AD therapy.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/uso terapêutico , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...